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Simple analytical method for evaluation of statistical
importance of correlations in QSAR studies
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A new general method allowing to evaluate the statistical importance of independent
correlations from multilinear QSAR models was proposed. The method is applicable to any
multilinear QSAR model involving N experimental points and M independent parameters.
The application of this new method is demonstrated on several examples.

1. Introduction

One of the basic goals of any natural science is the formulation of simple models
and concepts, in terms of which it is possible to describe, understand, and explain the
observed phenomena. Sophistication of these models depends, of course, on the degree
of development of a given science and, also, on the complexity of the studied problems.
In this respect one of the fields resisting most strongly the rigorous theoretical descrip-
tion is represented by the broad area of the relations between the structure of molecules
and their properties. For this reason the important role in formulating such relations
still belongs to various empirical rules and concepts. Such is, e.g., the situation with
the basically empirical Hammett and Taft equations [5,6,11–14], characterizing quan-
titatively the electronic effects of substituents on reaction rates and equilibria. The
same idea of expressing the molecular property in terms of linear combination of cer-
tain parameters (descriptors) has found, however, wide acceptance in other areas of
chemistry [1,4,16] and beyond. The typical example in this respect is represented by
the systematic studies by Hansch [2,7–10], who extended the application of empirical
structure–activity relationships to the correlation of biological activities. Since its in-
troduction several decades ago, this approach, now known as the QSAR approach, has
become a respected and widely used methodology in rational drug design. Because the
factors determining the biological activity are extremely complex and often several of
them act in parallel, the corresponding QSAR models usually have the form of mul-
tilinear correlations with several empirical descriptors (electronic and steric constants
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of substituents, hydrophobic parameter logP etc.). Parameters of these relations are
usually determined using least-squares procedure. Within this approach, the quality
of resulting empirical relations is usually classified using various statistical parameters
as, e.g., the standard deviation, correlation coefficient, cross validated correlation co-
efficient [3] etc. Although these parameters certainly provide a certain measure of the
“tightness” of the linear relationship between the correlated quantities in any particular
case, the comparison of independent QSAR models is much more difficult. Thus while
the statistical importance of two correlations with the same number of points and the
same number of parameters can simply be done by comparing the values of correlation
coefficients (the better correlation is the one for which the correlation coefficient r is
higher), no such simple test exists for correlations in which either the number of points
N or the number of parameters M (or both) are different. The typical situation in this
respect is when one- and two-parameter correlations on the same set of data are to be
compared. It is clear that the addition of the second parameter automatically results in
better correlation coefficient, but the question is whether this increase is high enough
to justify also the higher statistical importance of the two-parameter correlation. Our
aim in this study is to propose a new simple method allowing one to address and to
solve the above kind of problems.

The basic idea of our approach can best be demonstrated on the following simple
example. Let us imagine that one has to correlate a set of N experimental points with
some descriptors, and let us further assume that this correlation leads to the correlation
coefficient R. Now, let us suppose that instead of correlating actual experimental data,
we attempt at the same correlation with the set of N randomly chosen values λi. It
is clear that in most cases the correlation coefficient r of such a random correlation
will be smaller than R. But if we perform such a randomization test many times it is
possible, especially when the value of R itself was not very high, that the correlation
coefficient r of this random correlation could be equal to or higher than R. The
statistical importance of our correlation can thus be naturally evaluated according to
the probability that correlation coefficient r > R is obtained accidentally. The above
approach, performed numerically, is the basis of the randomization test [15] but in this
study we propose a method replacing the above brute force numerical procedure by
explicit analytical approach. In the following part the basic idea of our approach will
be presented.

2. Theoretical

Let us assume a general QSAR model in which a set of N experimental points
(y′1, y′2, . . . , y′N ) is correlated with the set of M linearly independent parameters (de-
scriptors) (x′j1,x′j2, . . . ,x′jN ; j = 1, 2, . . . ,M ) using the empirical QSAR equation

y′i =
M∑
j

ajx
′
ji + b. (1)
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Let us further assume that these quantities are subject to random experimental errors
characterized by the Gaussian normal distribution. The parameters aj are determined
according to least-squares criterion:

∆ =
N∑
i

(
y′i −

M∑
j

ajx
′
ji − b

)2

, (2)

∂∆
∂aj

= 0, j = 1, 2, . . . ,M , (3)

∂∆
∂b

= 0. (4)

Although the above least-square procedure can be applied directly to the set of
experimental values y′i and descriptors x′ji, it is convenient to transform them into a
new set of “centered” variables yi and xji defined as

yi = y′i − ȳ, xji = x′ji − x̄j , (5)

where

ȳ =
1
N

N∑
i

y′i, x̄j =
1
N

N∑
i

x′ji. (6)

Using these centered variables the correlation coefficient is defined as

r =

√√√√∑M
j aj

∑N
k ykxjk∑N

k y
2
k

, (7)

and it is possible to show that its value is invariant to any linear scaling of variables yi
and xji. In addition to this invariance it is also possible to show that the centered
variables have the same Gaussian distribution of errors as the original set of vectors y′i
and x′ji, so that their statistical distribution also does not depend on the direction.
Moreover, the centered variables are no longer linearly independent since because of
equation (8) only N − 1 components can be chosen independently:

N∑
i

yi = 0,
N∑
i

xji = 0, j = 1, 2, . . . ,M. (8)

As a consequence, the vectors of centered variables can be regarded as a point on a
surface of (N − 1)-dimensional sphere. The correlation coefficient then depends only
on the angle between the vector ~Y and the (hyper)-plane spanned by M vectors ~Xj :

Ytheor,i =
M∑
j

αjXji + β. (9)
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Figure 1.

Among all vectors lying in the (hyper)-plane (9), the one for which the coefficients α,β
have been determined from least squares criterion represents the best statistical approx-
imation to ~Y .

The simplest situation is in the case of single-parameter linear correlation
(M = 1) where the plane reduces to a vector a ~X. In this case, because of invari-
ance to linear scaling, the correlation coefficient is given by

r = cos
(
~X , ~Y

)
. (10)

This example is especially convenient for the demonstration of the basic idea of
our approach. For this purpose let us imagine the simplest case of linear correlation
(M = 1) with only N = 3 experimental points and let the actual correlation coefficient
be equal to R. In this case the vectors ~X and ~Y can be regarded to lie on the surface
of the two-dimensional (N − 1)-sphere, i.e. the circle (see figure 1). The angle of
these vectors is then equal to ϑ = arccos(R). Depending on the actual value of R,
this angle can vary between zero, corresponding to R = 1, and π/2, corresponding to
R = 0.

Now, let us imagine that instead of using actual (centered) experimental values
of variables y1, y2, y3, we calculate the correlation coefficient with the set of randomly
generated values λ1,λ2,λ3 (vector ~Λ). It is very probable, of course, that the correlation
coefficient r will be in most cases smaller than R, especially when the value of R
itself is high enough. In other words, the probability of randomly generating a good
correlation is low. If we now realize that a high value of correlation coefficient implies
small angle between the vectors ~X and ~Y , the low value of the correlation coefficient
found in majority of random correlations implies that the angle between the vectors
~X and ~Λ is greater than arccos(R). But it is also possible (and the probability of such
an event increases with the decrease of R) that the randomly found correlation will be
equally good or better than the one with actual experimental values. The probability
that this happens can be calculated in this case on the basis of simple geometrical
considerations (figure 1). It is clear, namely, that the desired probability P is equal
to the ratio of the length of the arc between the endpoints of the vectors ~X and ~Y
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Figure 2.

(i.e. for the angle of these vectors equal to arccos(R)) and the length of the same arc
for the angle θ = π/2 corresponding to R = 0:

P =

∫ arccos(R)
0 ρ dϑ∫ π/2

0 ρ dϑ
=

2
π

arccos(R). (11)

Similarly transparent is the calculation of the probability for the case of a linear
correlation with N = 4 experimental points. In this case, namely, the vectors ~X and
~Y can be regarded to lie on a surface of a three-dimensional sphere (figure 2). On
the basis of analogous geometrical arguments as before it is clear that the desired
probability is given by the ratio of the surfaces of spherical cap for θ = arccos(R) and
the half-sphere θ = π/2:

P =

∫ 2π
0 dϕ

∫ arccos(r)
0 ρ sinϑ dϑ∫ 2π

0 dϑ
∫ π/2

0 ρ sinϑ dϑ
= 1−R. (12)

The interpretation of these equations is simple. They say that if we found, for
example, in the case of correlation with 4 points the correlation coefficient R =
0.9, then there is 10% probability (1 − R) that such a correlation could be obtained
accidentally. On the other hand, if the correlation coefficient is 0.99, the probability
of finding equally good correlation accidentally is only 1%.

In connection with these formulas it is worth reminding that the value of prob-
ability does not depend on the “length” ρ of the vectors ~X and ~Y . So it is possible,
without loss of generality, to require them to be normalized to unity. This can always
be done by simple scaling, since the value of the correlation coefficient is invariant
with respect to such scaling. In a similar way it is possible to calculate the desired
probabilities also for general linear correlation with N experimental points. The only
important difference compared to both previous examples is that the vectors ~X and ~Y
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lie now on a surface of an (N − 1)-dimensional hypersphere for which there is no
possibility of simple graphical visualization. This, however, represents no serious ob-
stacle and the necessary integration can advantageously be performed in generalized
spherical coordinates defined by

y1 = cos ϑ,
y2 = v1 sinϑ,
y3 = v2 sinϑ,

...
yN−1 = vN−2 sinϑ,

(13)

where the auxiliary parameters v1, v2, . . . , vN−1 are bound by the normalization

N−2∑
j

v2
j = 1 (14)

required for the normalization of the vector ~Y . Thus, for example, in the case of linear
correlation with N = 4 experimental points, the above formula for the transformation
to generalized spherical coordinates reduces to

y1 = cosϑ,

y2 = cosϕ sin ϑ, (15)

y3 = sinϕ sin ϑ,

which corresponds to identification v1 = cosϕ, v2 = sinϕ.
The area element on the surface of the abstract (N − 1)-dimensional sphere is

then given by

dΣ =
1

vN−2
sinN−2 ϑ dϑ dv1 dv2 . . . dvN−3. (16)

Based on this expression, the final formula for the probability is given by

P =

∫ arccos(R)
0 sinN−2 ϑ dϑ

∫
∆(1/vN−2) dv1 dv2 . . . dvN−3∫ π/2

0 sinN−2 ϑ dϑ
∫

∆(1/vN−2) dv1 dv2 . . . dvN−3

=

∫ arccos(R)
0 sinN−2 ϑ dϑ∫ π/2

0 sinN−2 ϑ dϑ
. (17)

These probabilities can be calculated for any particular value of N and their
values, which depend on the value of the correlation coefficient R, determine the
so-called level of importance of the correlation. These values are, of course, often
used in evaluating the statistical importance of the correlations, but as far as we
know, the critical values of the correlation coefficient for each pre-selected level (1%,
5% etc.) can be found in statistical tables only for one-dimensional case. What is
new in our approach is that we report here the analytical formula allowing simple
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quantitative evaluation of the level of importance for any multi-linear correlation with
M independent parameters.

In order to show the basic idea of such a generalization let us analyse in detail
another simple example, for which the calculation of the probability is again possible on
the basis of simple geometrical considerations. This example concerns the correlation
of N = 4 experimental points using two-parameter (M = 2) correlation equation. Let
us assume that this correlation gives the value of correlation coefficient R. In this
case, the vector ~Y lies on the surface of an ordinary three-dimensional sphere and the
vector Ytheor lies in the plane

Ytheor = a1X1 + a2X2 + b. (18)

The correlation coefficient R is in this case given by the angle between the vector ~Y
and the plane (18).

The calculation of the probability that the correlation coefficient r of the ran-
domly generated correlation is greater or equal than the actual one R can be in this
case calculated using simple geometrical considerations in the following spherical co-
ordinates:

y1 = sinϕ cos ϑ,

y2 = cosϕ cos ϑ, (19)

y3 = sinϑ.

As it is possible to see, the first two components define a plane in which lies the vector
Ytheor (it can be generated for any given value of ϑ by systematically varying ϕ within
the interval 0−2π), while the third component defines the angle ϑ between the vector
~Y and the plane (see figure 3).

Figure 3.
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Based on this scheme it is clear that the desired probability is given by the ratio
of the surfaces of the spherical trip around the equator (for ϑ varying between 0 and
arccos(R)) and the half-sphere.

If we now take into account that in terms of coordinates (19), the surface element
of the sphere with unit radius is given by

dS = cosϑ dϑ dϕ, (20)

the following final formula for the probability can straightforwardly be obtained:

P =

∫ arccos(R)
0 cosϑ dϑ

∫ 2π
0 dϕ∫ π/2

0 cosϑ dϑ
∫ 2π

0 dϕ
=

∫ arccos(R)
0 cosϑ dϑ∫ π/2

0 cosϑ dϑ
. (21)

This choice of spherical coordinates, in which the angle ϑ is measured from the
plane of the equator, is especially useful in this case since as it is possible to see, the
value of the probability depends only on the angular variable ϑ related via (10) to the
correlation coefficient R. Similar idea of using first M components of the vector Y
to define the (hyper)-plane

Ytheor,i =
M∑
j

ajXji + b (22)

allows one to introduce the following set of generalized spherical coordinates, in terms
of which the calculation of the probability is especially straightforward:

y1 = u1 cosϑ,
y2 = u2 cosϑ,
y3 = u3 cosϑ,

...
yM = uM cosϑ,

yM+1 = v1 sinϑ,
yM+2 = v2 sinϑ,

...
yN−1 = vN−M−1 sinϑ,

(23)

where again the auxiliary variables u and v satisfy the normalization conditions

M∑
i

u2
i = 1,

N−M−1∑
j

v2
j = 1, (24)

ensuring the proper normalization. Using the general notation, the previous example
can be identified with the choice u1 = cosϕ, u2 = sinϕ, v1 = 1 for which the normal-
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ization (24) is automatically satisfied. In terms of the above generalized coordinates,
the area element on the surface of (N − 1)-dimensional sphere is given by

dΣ =
1
uM

1
vN−M−1

cosM−1 ϑ sinN−M−2 ϑ dϑ du1 du2 . . . duM−1

× dv1 dv2 . . . dvN−M−2 (25)

which straightforwardly leads to the following final formula for probability:

P =

∫ arccos(R)
0 cosM−1 ϑ sinN−M−2 ϑ dϑ∫ π/2

0 cosM−1 ϑ sinN−M−2 ϑ dϑ
. (26)

Using this formula the value of probability can be calculated (using, for example,
MATHCAD, MAPLE or other similar programs) for any particular combination of
N , M and R and these probabilities can consequently be used for comparing the
statistical importance of different QSAR models. As an example, let us consider two
following hypothetical correlations:

(1) simple linear correlation (M = 1) with 10 experimental points and the correlation
coefficient R = 0.95,

(2) two-parameter correlation (M = 2) with the same number of experimental points
and the value of R = 0.97, and let us ask what of these correlations is statistically
more important (“better”). Such a decision can unambiguously be done just on the
value of probabilities for each particular case. These values, calculated according
to formula (19) using MATHCAD program, are 2.5 · 10−5 and 5.0 · 10−5, respec-
tively. As the first probability is smaller than the second one, it is possible to
conclude that the first, single-parameter correlation is statistically more important
than the second one and so it is not necessary in this case to invoke the second
parameter. In order to be more significant than the single-parameter correlation,
the value of the correlation coefficient R of the second correlation should be at
least 0.98.
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